Los Angeles Harbor College
Technology Master Plan

2014-2017

Recommended by Technology Advisory Committee Spring 2014

Approved by College Planning Council on:
Los Angeles Harbor College
Technology Master Plan

Table of Contents

Mission/Purpose of Committee 3
Committee Composition 4
Technology Vision Statement 4
Guiding Principles 4
 Ease of Use/ Simplicity vs. Complexity/Difficulty 4
 Innovation vs. stability/reliability 5
 Standardization vs. autonomy/experimentation 5
 Accessibility vs. security/privacy 6
 Centralization vs. distributed services 7
 Proprietary vs. open source 7
I. Statement of purpose for Technology 9
II. The Strategic Planning Process 11
III. Our Planning Assumptions 11
 Assumptions about Our Students 11
 Assumptions about Our Faculty 12
 Assumptions about Our Staff 12
 Assumptions Related to Our Culture 12
 Assumptions Related to Technology 13
 Assumptions about Our Resources and the Budget 13
IV. Strategic Goals and Timeline 13
 Measures of Goals/Objectives 14
Committee Members Signature Page 15

TAC Plan -- June 29, 2014
Mission/Purpose of Committee:

The mission of Los Angeles Harbor College is to offer an environment that fosters learning by providing comprehensive programs that meet the educational needs of students and are appropriate and useful to the community we serve, including:

- Degree in Transfer Programs
- Vocational and workforce preparation
- Basic skills instruction
- English as a second language
- Credit and noncredit courses for lifelong learning
- Contract education including customized corporate training
- Community Services
- Support services
- Information literacy

An essential aspect of the mission for the community we serve is to advance economic growth and global competitiveness through education, training, and services that contribute to continuous workforce improvement and civic responsibility.

In order to support the college mission, the purpose of the Technology Advisory Committee is to assess campus computer resources and to develop, and update annually, a three-year comprehensive Technology Master Plan for the coordination of campus-wide computing. Specifically, the committee will:

- Make recommendations to the College Planning Council and Academic Senate on matters relating to the acquisition and use of technology campus wide and
- Create, and annually update the Los Angeles Harbor College Technology Master Plan, and promote, assess, and monitor its implementation.
- Increase awareness among the college community through a technology website of what is going on in the IT realm.
- Promote the use of computers and other technology on campus. Make recommendations for technology training for faculty and staff development.
- Develop recommendations for prioritization of support staff, training, and access to computer resources and laboratories.
- Identify specific academic technology needs as they arise across the campus in order to be in a position to provide support or modify equipment or infrastructure.
Recommend procedures for the acquisition, operation, and repair of technology resources.

Committee Composition:
The Technology Advisory Committee is a shared governance committee that invites all members of the college community--faculty, administration, and classified staff. Chair duties are shared by an administrator and a faculty member who are elected by the committee at the beginning of each scholastic year. There is also a strong technical guiding presence from the unit as a standing member. Academic divisions are encouraged to include representation in annual assignments of committee membership. Additionally, students and classified staff are welcome members along with any other interested parties.

Membership is generally approximately six faculty members, the director of IT, and an Academic Affairs Dean. Membership is also encouraged for those involved in Workforce and Economic Development, grants, and those involved in CTE potential technology interests and purchases. As an advisory committee, a consensus of the committee is based on attendees rather than a specific quorum vote.

Technology Vision Statement: Los Angeles Harbor College will use information technology to enhance access, learning, retention, and success.

Guiding Principles:
Los Angeles Harbor College is complex in both its organization and its technology, which requires competing information technology (IT) needs are carefully evaluated to ensure the optimal use of limited resources. Information technology decision makers must therefore balance:

Ease of Use/ Simplicity vs. Complexity/Difficulty

Ease of use refers to a user’s experience, the ability to complete tasks in a “pain-free” manner, with less training rather than more. Complexity/Difficulty refers to a particular technology’s ability to provide specific or customizable results (answers) or functionality to users.

Often there exists an inverse relationship between ease of use and the complexity of a technology. Exceptions may include Google search, which is widely popular because it provides preferred results to an average user’s questions. Photoshop software, another exception, can be successfully utilized by a toddler (as a simple paint application), yet it continues to be the industry standard for imaging and retouching, and includes advanced
features and techniques that take professionals years to master. It would be terrific if all technology worked in this way, but many systems have steep learning curves.

An appropriate level of “ease” depends upon expectation, and identifying the intended user group’s capability is necessary. Technology that is somewhat difficult for the average millennial teenager is probably unacceptably difficult for someone who did not grow up using electronics and technology. Likewise, an interface that is “easy” for a technologically illiterate person may not provide the level of Complexity (functionality or customization) that an advanced user seeks.

To find that careful balance, the committee needs to carefully consider minimum and average levels of technological competency in the users of systems (students, faculty, and administration). Most likely, the ease of use desired to register for classes via the internet probably will be different from the ease of use for students utilizing dedicated software in an advanced course.

Innovation vs. stability/reliability: The College must maintain a balance between the energy for innovation, the drive to find newer and better solutions to learning issues, and need for stability and reliability in the system. Innovation tends to move individuals in disparate directions, opening the door to risk in the system and a resulting instability. At the United Nation’s Internet Governance Forum in 2006, presenters offered this contrast: Private industry is focused on innovation, but government is averse to risk and prefers stability. Within the educational institution, the faculty is often more open to innovation in technology, experimenting with platforms and applications as they appear on the horizon. The IT staff, however, tends to focus on the side of stability and reliability in order to provide the highest and most consistent levels of support to the institution as a whole.

Standardization vs. autonomy/experimentation: The true paradox lies in the reality that standardization and differentiation strive to achieve two very different goals: standardization encourages management while differentiation respects autonomy. Both, however, must coexist in an educational environment.

Standardization is maintained by a managed set of extrinsic manipulators. Its intent is to introduce efficiencies into the system, making possible savings on purchases through master contracts and volume discounts. It also narrows the range of support that is necessary, especially in an era of severe budget restraints. The IT staff cannot hope to maintain the level of expertise required to provide support if the institution permits the unbridled use of any platform
or any brand of computer. On the downside, too rigorous a standardization may lead to staying with something long after it should have been discarded.

Autonomy and experimentation, on the other hand, are necessary if we are to find amid the welter of emerging technologies those that will best serve our students. Faculty, for one, need the opportunity to incorporate the latest in hard- and software that is industry standard.

Thus, the institution has to find the appropriate balance between standardization and autonomy. The institution requires a negotiation between what is practical and what is avant garde. Throughout this process, infrastructure for new hardware and software must also be monitored and maintained.

Accessibility vs. security/privacy: At Harbor College, all of the computers are connected to the college network and access internet resources through the campus network. The college network provides high-speed connections to internet resources, district systems, as well as other computers and network resources within the campus. It is easy to understand that many people want to have full (administrative) access to the computer provided for them in their work so that they can install or update software themselves whenever there is a need or desire to do so. Some programs will not operate properly if the person using the software does not have this local administrative privilege. In addition to allowing a user the freedom to install and update software, administrative access gives users a greater sense of both privacy and ownership of the computer provided to them. The feeling of privacy comes about because administrative access can give a user complete control over the computer.

Having administrative access does have its risks. A person with administrative privilege can modify or delete software, which is required for the computer to operate. Having the ability to install software also means a person has the ability to “install” malware (viruses and spyware). A person with administrative access can infect a computer in a number of ways like opening a bogus email attachment, inadvertently running infected software, or being tricked into downloading malware from a web site. In many cases a person without administrative access would not be able to infect the computer via those means.

A compromised campus computer (i.e. one infected with a computer virus or spyware) could potentially corrupt or erase information on the local computer, collect and send information to others for possible nefarious purposes, as well as cause network disruptions throughout the local campus and the district. Due to the high speed connection the campus has to internet resources, infected campus systems can also cause substantial problems for internet sites. Watchdog groups who monitor internet disruptions are more likely to blacklist traffic
from the campus when there is an infection, meaning that campus information, most commonly email traffic, will no longer be accepted from Harbor College at other sites.

The campus is responsible for ensuring that all software running on its computers is properly licensed. Allowing users to install software without any oversight also opens the campus to additional risk of violating software licensing rules. Fines for such violations are significant and caution should be maintained to prevent such infractions.

For the majority of people on campus the software installed and provided by the school is sufficient for their needs. Most users do not have the knowledge and discipline needed to prevent problems due to having administrative access. Many users see campus computers as similar to their home computers. However, in order for classroom use to be continuous when a relatively simple update might otherwise cause a disruption in the classroom, several faculty have been identified and trained as power users. This practice promises a careful balance of accessibility and security.

Centralization vs. distributed services: When deciding whether IT services should be centralized, distributed, or somewhere in between, it is important to agree upon whom it is that is being served and which services should be on offer. Once this is clear, IT may look at organizational strengths, organizational weaknesses, IT architecture, and organizational culture in order to decide upon a service policy. Other factors to consider may be availability of personnel and budgeting issues. Some applications do not work well in one environment, or IT staff does not know the specifics of a unique application (e.g., MAC operating systems, special printers, etc.). Centralized services can provide standardization and consistency, control and security and, therefore, a great deal of efficiency can be achieved. Distributed services are best when poorly run or understaffed centralized services mean slow response times, needless levels of management, inability to communicate directly with required people and time wasted with pointless micromanagement. Distributed services usually work best when various users have special requirements (when one size does not fit all). If done well, distributed services can also improve response time and lower overhead and other cost. If done poorly, distributed services can lead to no recourse if no local expertise is available.

Proprietary vs. open source:

Open Source (Examples: Linux, Mozilla, Opera, OpenOffice, Moodle LMS. Available also for games, video editors, photos, CAD, project management, texts and other curricular resources). There are many advantages in adopting open source software.
Lower cost (sometimes no cost). There will, of course, be transitional short-term costs of switching to open source—even if substantial for a large organization—which may be recovered by long-term savings.

There will be a greater variety of applications for the platform selected than with proprietary products since competitors have incentive to finance applications.

Interoperability across vendors due to adherence to open standards.

Because it is open source, individual users will find maximum freedom, choice, customizability offered to each user. All that is required is knowledge to write code.

Open code, therefore greater security since more eyes search for problems.

There will also be disadvantages to the adoption of open source software:

There is no guarantee that the open source program will be around in the future.

There is no guarantee that files created with Microsoft Office will run on the open source version; hence, the user must also have the Microsoft version as well.

Cost of switching from existing proprietary system may be substantial.

Fewer complementary applications than offered with proprietary products.

Smaller (or no) staff to provide professional attention to quality concerns, especially with curricular materials.

Time is required to overcome habits formed with proprietary products that have been the default.

Technical support must be obtained from forums or must be purchased at a cost.

Proprietary (Examples: Microsoft and Google. There will certainly be a greater variety of platforms available or to become available as they become profitable)

The advantages to adopting proprietary software are significant:

Interoperability within the universe of the vendor’s products.

Technical support (24/7) included with the product.
• Hidden code, therefore more security.

• Economic studies show greater market share and profitability accrue to proprietary products than to open source products making long-range planning possible.

There will also be disadvantages to the adoption of proprietary software:

• Cost of features not needed or not in use. Frequent upgrades and new versions require almost continual expense.

• More limitations and less choice due to settings placed beyond the control of the user.

• Must maintain profitability by managing evolution of the platform in response to competition.

I. Statement of purpose for Technology:

Asking the purpose of technology at Harbor College is as big a question as asking the purpose of technology in society. As an educational institution, after all, we are one of the essential builders and shapers of society. It helps, however, to occasionally discuss and revisit the big questions. It is, in fact, the duty of the TAC committee to do so. Any changes or refinements in thinking should be reflected in the Technology Master Plan.

Our college mission and our technology vision statement can be summed up as follows: we are here to serve our diversely constructed community and our diversely skilled students by providing a universally successful learning environment. Technology plays a big part in shaping this environment. Our environment is broad in that we serve students with vastly different pedagogical needs, and it is deep in that we serve a globalizing community that requires both general (permanent) and very specialized (ever changing) skills.

The question, therefore, becomes “How can technology at Harbor College be both broad and deep at the same time”? And the answer is, even in these days of decreasing apportionments, that we must keep in mind who it is we serve: our community and our students. When thinking or arguing about the purpose of technology at Harbor College, therefore, the following four guiding principles should apply:

I. Technology should serve our globalizing community and therefore should foster an environment of independent learning. We can no longer simply teach the facts or the methods, because the facts (and narratives) keep adding-up and the methods keep changing. Technology, therefore,
LAHC Technology Master Plan

should encourage independent curiosity, self-guided learning, flexibility, and ultimately self-teaching. Technology must foster independence and self-discipline.

II. Technology should serve our local community and should, therefore, be used to prepare students for jobs with local businesses and other community employers. The word technology is often used synonymously with computers or communications, but our local community requires an even broader definition.

III. Technology should serve our students. The educational needs of our students must come first. Neither political pressures, professional curiosity, public relations potential, nor the allure of easy solutions should drive our technology goals. Nor should the availability of grant money be a primary driver, nor should the desire to be cutting edge.

IV. Technology should serve education. Except for student services applications (which could best and most efficiently be dealt with in the District Technology Plan), education technology at Harbor College should be nurtured from the classroom level up. This bottom-up approach will insure that a one-size-fits-all mentality does not take hold; it will maintain academic freedom and guard against unwieldy or expensive educational technology being imposed by people who know little about how our students learn. On the other hand, technology at Harbor College should not cater to the whims of consumer electronics. Though we should not ignore the technology used by our students in their personal lives for personal goals, we should not feel the need to drive policy based on the latest technology in the marketplace.

Technology should do no harm. If we cannot do something well, we should not do it at all. Technology today has changed in its pervasiveness but not in its very nature. Regardless of technology students must still learn to read, comprehend, write, think, question, research, debate, memorize, rationalize, diagnose, judge, emote, observe, decide and process. In other words, the human element has not changed and in education the human element still needs to be nurtured. Technology should enhance not encumber this growth.

Technology is part of society. We use technology everyday to buy, bank, apply, communicate, and create. Rare, too, is the job these days that does not incorporate a lot of dynamic technology. Our work lives and our personal lives will forevermore be rich in technology. For those who specialize in a highly technical field, technology will be even more important. Some academic subjects, it must be admitted, may just as easily be successfully taught with little help from technology. Some would even argue that technology just gets in the way for some students. The fact is, however, that the use of

TAC Plan -- June 29, 2014
technology is itself a basic skill and must be incorporated into all subjects in some way. To do other than that would be to do both our community and our students a disservice.

II. The Strategic Planning Process:

Planning at Los Angeles Harbor College is done largely from the bottom up. That is, planning is initiated with the various units of the college in response to the fiscal, enrollment, regulatory, and environmental factors facing the college. The units of the three planning clusters (Academic Affairs, Student Services, and Administrative Services) begin the process in the fall of the academic term. They identify and prioritize both core and supplementary activities for the unit and then pass them forward to the cluster. At the cluster level, the activities are again prioritized and forwarded to the College Planning Council for inclusion into the College Master Plan. The entire process must be completed by the end of the academic term for implementation during the following year.

The Technology Advisory Committee is a “clearance committee” as provided for in the College Planning Policy and Procedures Manual, and must be involved in the overall planning process accordingly. As each unit contemplates an activity involving technology procurement or implementation, it must have that activity reviewed by TAC to make sure that it conforms to the general planning parameters established for the college. Moreover, as the college continues to build new buildings or implement structural changes, users’ groups must include a review by TAC to again ensure compliance with the general directions set for the college.

In order to comply with the requirement that a unit must secure the review and approval of the Technology Advisory Committee before procuring or implementing any form of technology, the unit must submit its request on the appropriate form to the budget owner responsible for that unit. No purchase order or facilities request may be entered into the system without a copy of the approved form.

III. Our Planning Assumptions

Assumptions about Our Students:

Data from the 2012 student survey at Los Angeles Harbor College (p. 23)

- More than 91% of our students often or sometimes use a computer at home to do school work.
- Eighty-seven percent (87%) often or sometimes use the Internet for an assignment.
- Another 90% utilized the Internet to apply, register, check grades, and add or drop classes.

TAC Plan -- June 29, 2014
From the National Education Technology Plan (2010) http://www.ed.gov/technology/netp-2010

- Today’s students are very technology-savvy, feel strongly about the positive value of technology and rely upon technology as an essential and preferred component of every aspect of their lives.
- Students are not just using technology differently today but are approaching their lives and their daily activities differently because of the technology.
- As students get older, their use of technology becomes more sophisticated, but, comparatively, the younger students are on a fast track to becoming greater technology users and advocates.
- The access point for technology use, particularly for older students, is home-focused, not school-focused.

Assumptions about Our Faculty

Full-Time Faculty Demographics (April 2013 figures from 2013 Fact Book http://www.lahc.edu/research/FacultyFTDemog13.pdf)

The full-time faculty remains about 54% female and 46% male. In age, our faculty are largely from the older demographic, with 30% in the 55-64 age range and 22% in the over 65 range. Thus, the preponderance of the faculty are in the category that Prensky would call digital immigrants; the younger faculty would most likely fall into the category of digital natives, having grown into their adult, professional lives as native users of technology.

Assumptions about Our Staff

Our IT staff at Harbor College is very much under-resourced for the number of computers and the infrastructure that they have to maintain. At present there are only 6 personnel to maintain ~1600 computers, servers, and related network infrastructure.

Assumptions Related to Our Culture

The culture of Los Angeles Harbor College has been one of reluctance to change. This, however, is little different that the culture at many other colleges and universities. The faculty and staff would distribute along a nearly perfect bell curve, with 15-20% of employees leading the way toward
increasingly sophisticated use of technology. On the other end, there are 15-20% of employees who actively resist any move to include technology in their daily activities. Those in the middle are reluctant to move toward change, but adapt to a changing work world when shown how advances in technology will improve their work lives.

Assumptions Related to Technology

Competition in Virtual Space Summary
- Online classes and degrees are the fastest growing part of higher education (and soon, K-12 education)
- Our students see online programs as a viable choice in continuing their educations.
- There will increasing pressure to move from "online classes" to a "virtual campus".

Assumptions about Our Resources and the Budget

College Capacity Needs Based on Area Demographics and Participation Rates:

The 2006 Harbor College Accreditation Self-Study set an enrollment target of 12,000 students for the year 2010. The District Allocation Grant task force established this as the minimum enrollment "break even" level at which the college can maintain long-term financial self-sufficiency. The college has nearly achieved that goal in the fall of 2013, showing more than 11,000 students enrolled. The main factor accounting for this increase has been the recession and the significant downturn in employment, the decreased apportionment from the state, and the resulting limitation on numbers of sections. These constraints have been felt by all community colleges in the state, and as a result, we are carrying a large number of unfunded FTES.

This plan specifies initiatives needed to mitigate any downturn, recognizing the competing institutions in our service area, facing the same trends will take similar initiatives, backed by greater resources. The essential demographic obstacle to sustaining our target enrollment level, given other trends, is currently leveling-off of the high school student population in the service area, which is projected to continue. The demographic possibility for mitigating this is in the projected growth in other area populations and at local levels of career demand that can be served by the new and expanded programs this plan specifies.

IV. Strategic Goals and Timeline

* One Year Goals:
 1. Review campus technology standards
 2. Evaluate procedures for acquisition, operation, and repair of technology

TAC Plan -- June 29, 2014
3. Evaluate and expand the Power User plan implemented to improve support from within the various departments
4. Update the campus technology Website
5. Work with SSSP to determine training needs with the implementation of Peoplesoft
6. Increase communications with areas that purchase technology hardware, software, and infrastructure

• Two Year Goals:
 1. Redesign the campus technology Website
 2. Identify academic technology needs for the campus
 3. Evaluate the effectiveness of increased communications from year one and address any issues of miscommunication or failures of communication
 4. Evaluate effectiveness of training for staff and faculty in the Peoplesoft system

• Three Year Goals:
 1. Develop and implement a faculty/staff development program to support district changes
 2. Evaluate the faculty/staff development program to support the student portal
 3. Confirm the status of goals and set new goals based on the evaluation of the preceding years
 4. Create second data center to allow critical services to continue operating during failure of any single data center

Measures of goals/objectives:

While the committee serves as a clearance committee to assist IT and the college by addressing concerns or problems that arise in the broad area of technology, the goals and objectives of the committee are to avoid problems when possible and solve problems when necessary. Therefore, goals are primarily proactive monitoring of areas that might have needs, rather than creating or producing measurable tasks. Measures of goals and objectives, then, are partly a measure of zero. That is, if there are no problems, the purpose of the committee is fulfilled.

Through regular reports from IT and any reports or comments from other sources, the committee evaluates the effectiveness of current proposals and functions. An increase in complaints or problem areas indicates the need for further action when they might occur. Each issue is addressed individually, but in context with other related potential issues and then followed up to determine if the concern was solved. Records of meetings and communications regarding technology needs or issues serve as the evidence of goals being addressed and met.